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Abstract

The Phylanx Distributed Array Processing toolkit is a project being undertaken by the

Ste||ar Group at LSU, built using the HPX runtime. This system has many single-node

functions implemented, but before we started this project it had very few distributed primi-

tives implemented. Because of matrix multiplication’s foundational importance in machine

learning algorithms, we chose it as our first major foray into distributed functionality. In

order to provide options to users, we chose to implement two different algorithms, a tiling

ambivalent one, as well as Cannon’s algorithm. We found that in a single node distributed

test, both of our algorithms outperformed the serial version.
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Chapter 1. Introduction

Machine learning libraries like Google’s Tensorflow, or Theano provide a mathematical

backbone for the linear algebra operations which are at the heart of almost all statistical

and machine learning methods. Without them it would be much more difficult to flexibly

build and deploy complex machine learning models. As machine learning models continue

to become more and more complex, and require larger amounts of data to train, the con-

tinued absence of libraries with robust integration of distributed and high performance

systems unnecessarily hamstrings forward advancement. Phylanx [1], the distributed array

processing toolkit, was created to address these problems. Similar to how other libraries

like Tensorflow seek to expose a Python api to enable easier uptake by domain experts,

Phylanx was built to enable Python code to be disassembled and optimized for running in a

distributed environment, requiring no more complicated knowledge of Python than Numpy

or Keras. Under the hood, Phylanx makes use of HPX [2], the C++ distributed runtime

developed by the Ste||ar Group, to enable distributed functionality. For optimized shared

memory linear algebra performance, Phylanx utilizes the Blaze library [3], developed by

Klaus Iglberger. Prior to the work that this report references Phylanx had capitalized on

only a few opportunities for distributed functionality, primarily matrix vector products,

and matrix addition. In our work on Phylanx we extended this to include two matrix

multiplication algorithms, a generalized version allowing irregular matrix tile sizes, and a

modification on Cannon’s algorithm.

This work was also undertaken with a goal of learning about tiling optimization, and

the opportunities for it in a linear algebra system. When we make reference to ’tiling’ we

mean the result of distributing data across multiple computational nodes so that each data

structure which has been distributed (most often a vector or matrix) is composed of many

different ’tiles’, or subsets, which are placed on many different machines in a cluster.
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From preliminary testing we found that our distributed primitives (functions) ran faster

than the serial versions in a shared memory distributed environment1. In Chapter 5 we

discuss these results in detail.
1That is, running multiple processes at the same time on one machine, requiring each process to go through
HPX’s TCP/IP layer to communicate with one another. This meant that the computation was distributed
in a sense, but also requires further distributed testing in a cluster environment to confirm our results

2



Chapter 2. Background and Motivation

2.1. Motivation

In recent years there have been several organizations which amass extremely large datasets.

Whether this is browsing data from Amazon, industrial IoT sensor feedback, agricultural

data sources, or self-driving car input data, there are some applications for which extremely

large amounts of data can be analyzed for a variety of benefits. For certain of these appli-

cations, it is necessary to perform operations over the entire dataset at once. Examples of

this include training the model for Tesla’s self-driving cars, or Amazon or Netflix perform-

ing a matrix factorization on transaction or rating data. These examples and more make

extensive use of linear algebra operations. Linear algebra libraries have a long history of

being tuned to get optimum performance on single machines and in distributed environ-

ments using MPI, but the particular use-case of distributed linear algebra in systems like

HPX1, does not have libraries that are as well-standardized.

One example which may help us understand the need for a system like Phylanx is Linear

Regression2. In order to get a set of weights for the coefficients in a linear predictor system

with one dependent variable you must solve the following linear algebra problem.

ATAx = AT b+ ε

Depending on the application, the amount of data involved in a computation like this

could be extremely large. For example, with the average person checking their phone

80 times per day, if 2 of those check-ins included use of Facebook, Facebook could get,

conservatively, 100 million tcp requests from the United States every day. If, for example,

they wanted to test latency on connections based on location they could easily muster a

dataset of one billion network requests. Trying to perform an ordinary least-squares (OLS)

regression on a dataset with a billion rows on a single node would take a very long time,
1HPX is what is known as an Asynchronous Many Task (AMT) runtime
2For those who are unfamiliar with the goals of linear regression, please refer to Appendix I
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but if they could distribute that application, something they could do easily with services

like Amazon Web Services (AWS) or Microsoft’s Azure, they could get the result back in

much less time. Less time spent waiting on models being run translates to higher efficiency

for analytics staff, and higher productivity.

Large linear algebra intensive computations using HPC systems are common in areas

like Astrophysics, or meteorology, but less common in the machine-learning community.

Most of the code bases which solve these large problems are tailor made for the particular

problem using performant languages like C/C++ and Fortran, and often link to CUDA

code for GPU acceleration. One of the problems then with extending the availability of

HPC to ML researchers is the steep learning curve for developing distributed applications

in these lower-level languages. Our goal with Phylanx then, is to provide them with a

more familiar, more user-friendly API, which under the hood can take advantage of HPC

resources automatically. Rather than create a separate standard, we chose to emulate the

NumPy API for our front-end, since NumPy is the most commonly used library in Python,

especially for Machine Learning practitioners.

2.2. Matrix Multiplication

In the above example of linear regression it is obvious that the matrix multiplication

operation is an important part of the computation. Not only is this the case in linear

regression, matrix multiplication is a very common element of Machine Learning algorithms

in general. As a result of matrix multiplication’s great importance for our target audience,

we decided to focus our initial efforts for developing distributed functionality on exposing

a distributed matrix multiplication operation. However, in order to better serve our goals

with optimizing tiling we have implemented two different algorithms. One, what we are

calling dot_d, is extremely flexible when it comes to the tiling, such that it searches for the

parts of the tiles in the RHS of the operation which overlap with the relevant dimensions

for the local tile of the LHS operand. The other is a modification of Cannon’s algorithm,

an algorithm for distributed matrix multiplication first developed by Lynn Elliot Cannon

4



Figure 2.1. Phylanx distributed_matrix example code

in 1969.

2.3. Background

For the algorithms we implemented, we relied on previous work on distributed data

structures in HPX by Wei et al [4], work on tiling by Huang et al [5], much work done

on the HPX system by Heller et al [2], and work on annotations in Phylanx by Hartmut

Kaiser.

2.3.1. Distributed Object

One of the most important precursors for this project was the distributed_object. This is

an abstraction which allowed us to coordinate a single data structure across many different

localities, and enable retrieval of non-local elements. For the multiplication algorithms we

made use of a specialized version of the distributed_object, the distributed_matrix, which

allows submatrix fetching on a non-local tile. Figure 2.1 shows it in use.

As you can see, the distributed object exposes a fetch function which allows us to access

non-local elements of the data structure in an object oriented way, using C++ Standard

Library idioms (futures) similar to how one might access a data member of an ordinary

local object. This convenient abstraction allows for distributed software development which

is focused on the already difficult nature of structuring SPMD algorithms, instead of the

nuts and bolts of remote data access. Another feature of the distributed_object is that it

is "lazy", in the sense that it registers itself with AGAS, and only finds the precise location

5



Figure 2.2. UPC++ dist_object example code

of a colleague when that colleague’s data is needed locally, and requested through the fetch

function.

We were inspired to create Phylanx’s distributed_object by the UPC++ [6] data struc-

ture of the same name. The main difference in its use is that Phylanx’s distributed_object

requires a unique basename to be passed at construction in order for each local portion

to find its non-local colleagues through HPX’s Active Global Address Space (commonly

referrred to as AGAS). Figure 2.2 is sample code taken from the programmer’s guide to

UPC++ demonstrating the use of that library’s version of a distributed_object.

2.3.2. Tiling

As mentioned previously, throughout our development of distributed functionality we

had as one of our goals the eventual optimization of user-supplied programs with respect

to tiling of distributed matrices. By tiling we mean the intentional distributed arrangement

of data segments. For example, in the situation where we want to compute the matrix result

A = B + C
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on a set of four computational nodes, we could have many different arrangements of that

data. Figure 2.3 shows how each matrix involved must be intentionally allocated on a

particular compute node in order for it to be used in the computation. Figure 2.4 shows

a non-optimal tiling (for our addition operation) which will require extra network com-

munication (represented by arrows for the fetching) in order to compute the result. For

matrix addition with uniform tiling the optimal solution is simple to find, as there is only

one, when all corresponding tiles are co-located on one node. In the case of non-uniform

tiling however, there is the possibility that even this optimal solution is not trivial to find,

if blocks of A and B do not have an exact dimensional correspondence3.

For matrix addition, tiling decisions can be very easy. But for operations like matrix

multiplication, there can be much greater complexity. Complicating factors include choice

of algorithm, number of available processors, pre-existing tiling, as well as others. For

instance, just in the algorithms we implemented, Cannon’s algorithm requires a perfect

square number of processors while dot_d will function with any number of processors. For

situations with 35 available processors then, you may need to choose between the potential

communication reduction benefits of tiling your matrices on 25 processors for compliance

with Cannon’s requirements, or trying to take advantage of all of the available processors

with dot_d. These are the sorts of questions we hoped developing more distributed func-

tionality in Phylanx might help us answer, whether we learn more in the design process or

through the utilization of Phylanx as a testing environment.

2.3.3. Annotations

The data structure used to keep track of which blocks of each matrix are stored on

which computational node is called the "annotation" in Phylanx. This is essentially a

list of lists, which is established when the data structure is initially created, for example,

when a matrix is loaded from disk and partitioned onto multiple nodes. At construction,

the participating localities coordinate using AGAS, submitting their calculated share of the
3This extra difficulty in finding an optimal set of tiling choices while non-uniform tiles are present is one
reason why, although dot_d allows us flexibility in this regard, we may not prefer to make use of it
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Figure 2.3. Creating a distributed object

Figure 2.4. Network communication required to address tiling mismatch
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Figure 2.5. Four node annotation

macro-level data structure, so that after every node has chimed in each node receives a copy

of the annotations for the macro-level data structure. This means if the data structure,

for example a matrix, is used in an algorithm, say multiplication, the node can find from

the annotation which node owns the data it needs to progress in the calculation. Figure

2.5 is an example of an annotation generated from a matrix of dimension 6x6 distributed

across four localities. Again, each node stores a copy of this metadata, making it possible

to identify the home node of any element in the macro-level matrix.

It’s important to note that while annotations are used in concert with the distributed_matrix,

the latter does not exist at all times. The underlying data, allocated locally on each node,

persists as long as it is needed using RAII, and the distributed_matrix behaves similarly.

That is, the distributed_matrix only exists as long as it is needed in the computation.

Once the computation needing it is complete, it goes out of scope. Since the distributed

object is "lazy", even if a matrix is distributed, and involved in many subsequent opera-

tions, each participating locality registers with AGAS only once per construction, and the

IDs assigned by AGAS then are fetched as needed each time. Since all of these operations

are occurring concurrently, with no object-wide barriers, this ensures that the program

preserves its futurized nature (see chapter 4 for a discussion of futurization in AMTs). The

annotations do still require a barrier on all participating localities at construction, in order

for the annotation to be copied and distributed to each participating localities, but after

that, the distributed_matrix requires no further hard barriers unless the algorithm itself

necessitates it. The operation of the distributed_matrix was designed this way largely to

avoid altering the most basic, persistent data-types in use in Phylanx, ensuring that they

remained simpler shared memory data structures.

9



2.3.4. Summary

The Phylanx project was started with the goal of producing a high-quality, performant

package which would enable a simple pathway for domain scientists to port their programs

to a distributed environment. Prerequisites for our work towards this goal have included

development of distributed data structures, and representations for, as well as a system for

better understanding, tiling.
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Chapter 3. Matrix Multiplication: dot_d

One of the two algorithms we implemented for matrix multiplication was what we call the

dot_d algorithm. This algorithm takes full advantage of the flexibility of the annotations,

and is capable of using inputs which are distributed across, among other things, arbitrary

numbers of localities, and non-uniform (but still rectangular) tiling schemes. This is in

contrast to the requirements of Cannon’s algorithm, which requires a perfect square number

of participating localities and a uniform tiling.

This algorithm uses the local tile of the LHS operand to set the pace for the compu-

tations it performs. What this means is that the LHS operand defines many aspects of

the computation rather than depending on information about both the LHS and RHS. For

one thing, the algorithm requests only portions of other tiles which overlap in a relevant

way with the local LHS data. This could mean, for example, that some computational

node X does not even make use of the entirety of the local RHS tile on X. It allows some

other LHS residing on node Y which needs the data to request the leftovers of the RHS

on X, rather than node X requesting the data missing from its own LHS from some other

node Z, in order to take full advantage of X’s local RHS data. Figure 3.2 displays this

situation. Although most algorithms do not have this sort of flexibility as a requirement,

as mentioned previously it pairs nicely with the very restrictive Cannon’s algorithm for

supplying options to users, or the tiling optimizer.

The dot_d primitive uses the annotations directly in the multiplication step by iterating

through all tiles in the RHS, searching for those which have a relevant overlap, and calcu-

lating the submatrix result in its output matrix. In the process of matrix multiplication,

when multiplying two matrices A = B · C, with B ∈ Mα×β, and C ∈ Mβ×κ, we perform

α× κ total dot products (row of LHS times column of RHS). When we are performing tile

multiplication, we are multiplying a subset of one matrix by a subset of another. We can

represent this as tiles

Bi, Bi ∈Mαi×βi ,
∑
i

αB,i = α

11



Figure 3.1. Calculating Tile Output Size

Ci, Ci ∈Mβi×κi ,
∑
i

κC,i = κ

∑
i

βB,i =
∑
i

βC,i = β

In order to compute the result matrix A, one node in the dot_d execution holds one Bi,

its local LHS tile, as well as one Ci its local RHS tile. It iterates through all of the known

Cj, searching for any tile which has any range of rows which is a subset of the range of

columns which Bi posesses. When it has found one, it takes the subset of Bi which has

the same range of columns as the range of rows which the Cj has, and stores their product

as part of the output tile Ai. The dot_d primitive generates output tiles with dimensions

of the number of rows in Bi by the number of columns in Ci. It is worth noting that

although we have been referring to dot_d as an algorithm which can tolerate arbitrary

tilings, it is required that the tiles of B form a tile row with homogeneous boundaries.

That is, if one tile has rows [25, 50), and another tile has rows [24, 49), these boundaries

are nonhomogeneous, and will cause an error. The same is true of C, albeit with respect to

tile columns. Figure 3.1 demonstrates these aspects of the tile output size, and its relation

to the tile input size.

12



Figure 3.2. Dealing with Non-Uniform Tiling

When the LHS operand is not tiled such that the tile row is composed of only a single

tile (i.e., the matrix is tiled in a row-major fashion), it is required that all elements in

the tile row add together their partial results. This is because unless node i possesses all

elements of the rows in the LHS, it will be performing only partial dot products. Figure

3.2 shows how this happens. In the figure, the tile B0,0 does not possess all columns of the

matrix for each row it has. As a result, it uses only a limited set of rows in the tiles fetched

from C. This limitation means the dot products it performs are incomplete, and are only

partial sums. Although in the graphic the output matrix is cut into even tiles, this can

only happen at the end of the computation. In the middle of the computation, the node

which contains B0,0 has a partial sum of A which is of dimension (# of rows in B0,0) x (#

of columns in C). All such intermediate results which have the same set of rows then (in

the example in figure 3.2, nodes (0,0), and (0,1)) must be summed to get the actual result

for that section of A. At that point, the result can be sliced up and tiled across the nodes

in the original tile row, giving us the nice output matrix A in 3.2. This process is visualized

in figure 3.3.

13



Figure 3.3. Calculating intermediate sums and tiling them
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Chapter 4. Matrix Multiplication: Cannon’s Algorithm

The second algorithm that we implemented for matrix multiplication was Cannon’s algo-

rithm. This algorithm avoids the reduction step which is necessary in the dot_d primitive

in the case where the tiles do not encompass an entire row. This is the main advantage for

Cannon’s, and we believe is one of the reasons why it generally substantially outperforms

the dot_d primitive in terms of speed. Cannon’s does have more stringent tiling require-

ments than dot_d does, however. It requires that the matrices be tiled uniformly across a

perfect square number of partitions. These two requirements mean that if a user wants to

use this primitive in the middle of a long program with outputs of other operations, those

outputs must either already be structured correctly, or be retiled before they can be passed

as arguments to Cannon’s.

4.1. Main Algorithm

Cannon’s Algorithm is structured mainly to avoid communicating partial results. It achieves

this by moving the input tiles rather than the output tiles. For a computation A = B · C,

distributed on 9 localities, we have the first iteration in figure 4.1.

Figure 4.2 shows how after the first iteration we move the tile rows of the LHS to the

left (with wraparound) and the tile columns of the RHS up (with wraparound). In the

traditional formulation of Cannon’s algorithm, the only loaded copy of the data is moved

in each iteration. Within the design ethos of Phylanx, this would complicate the algorithm,

as it introduces a hard dependency tree of move operations. For example, if node (0,0) in

the tiling structure is much faster than its neighbors, it could be forced to wait until nodes

(1,0) and (0,1) were done with their data so it could be moved to calculate the next partial

result for (0,0). This waiting could happen at every single iteration, severely hampering

execution speed. What we decided to do was not to move the sole copy of the data, but to

instead use a rolling copy retrieval method, so that when the execution started, every node

fetches (copies) the data to its right and below first, then the data two nodes right, and

two nodes down, and so on. This does carry the cost of duplicating the tiles, but allows

15



Figure 4.1. Starting Point of Cannon’s Algorithm

Figure 4.2. Data Moving
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the the cluster to make use of all available computing capacity.

A common practice in AMTs is to turn a single program into an execution tree com-

posed of discrete computational units. This process allows the system to first generate the

specification for all the computations needed, and perform them in order of necessity. The

process of representing the computation as an execution tree is referred to as "futurizing" a

computation. The term refers to the fact that intermediate results become a "future," after

the standard library convention, meaning that while the result is not complete yet, you can

attach computation to the result which will execute when it is complete. In order to further

optimize Cannon’s algorithm we chose to futurize the network communication so that we

issue fetch commands on the tiles α we will need next, perform the multiplication on the

tiles we have, issue fetch commands for the next tiles β, and perform the multiplication on

the α tiles we fetched previously, continuing until the entire multiplication is done.

Unlike the dot_d primitive, the Cannon product does not have substantial difficulty in

determining output tile size. Since all tiles of the LHS must be equal to each other, and

since this requirement similarly holds for tiles of the RHS, the output tiles are all of the

same size, that is, they will be the number of rows in a tile of B, by the number of columns

in a tile of C.

17



Chapter 5. Conclusion

At the outset of this project we had several goals in mind. These included learning

more about how to implement distributed primitives in the future, learning more about

how to design these primitives with tiling in mind, and the actual development of two

performant, distributed matrix multiplication algorithms. With respect to the first goal we

now know that distributed primitives may need auxiliary data structures to support efficient

organization of tiling information, and that writing distributed primitives is a process that

is uniquely challenging, in a way that serial primitives is not. With respect to auxiliary

data structures, an example is how we were required to construct a representation of the

tile row from the annotation for the LHS operand and a representation of the tile column

for the RHS operand in the Cannon Product. This is directly related to how the Cannon

Product runs, and other algorithms may need their own tailored way of traversing existing

tiling. In the case of dot_d, we did not need an extra data structure for execution aside

from the existing annotations. With respect to the second goal we learned that for tiling

analysis with the goal of optimization, uniform tiling is much simpler to work with than

non-uniform tiling. For the last goal, we produced two algorithms for matrix multiplication,

as we set out to.

5.1. Results

With the two matrix multiplication algorithms completed, we were able to run some pre-

liminary performance tests. Table 5.1 displays those results in tabular form, and figure 5.1

displays them in a graph. In figure 5.2 we can see the speedup achieved by the respective

algorithms, calculated as Speedup = t1/tN where t1 is the time in the single process version

and tN is the version with N processes. In our case, as they are only preliminary results,

we only tested on 1 process, and on 4 processes. We obtained these results running the

application with 4 separate processes on a single Windows machine, versus a single process

for the linear version. Due to unexpected technical complications, we were not able to use

the threading ordinarily used in the Blaze linear algebra library for our tests. Although our
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Matrix Size dot_d Cannon dot (serial)
500 5351.08 3131.345 8538.37
1000 26946.15 25889.2 67425.2
2000 282916.5 170091.5 539491

Table 5.1. Preliminary Test Results

Figure 5.1. Preliminary Test Results - Raw timings

tests were performed in a shared memory environment, and thus could be contested, we

believe that the requirement of communicating through the TCP/IP layer in HPX means

that the results are approximately equivalent to running in a fully distributed environment.

In the tests we ran, we found that the Cannon product was always the fastest, achieving a

speed-up relative to the serial of between 2.6 and 3.2. Cannon consistently outperformed

dot_d. As we mentioned before, we believe that the lack of a reduction step across tile

rows in the output matrix substantially aided the Cannon product, as well as its use of

futurization of the fetches. Of course, further testing is required to confirm these results.
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Figure 5.2. Preliminary Test Results - Speedup
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5.2. Future work

Although these results are only preliminary, they are encouraging, and suggest that our

work on this project has meaningfully advanced the state of the Phylanx project. In order to

advance closer to having a robust system for performing linear algebra for ML applications,

or otherwise, we have several new objectives. The main one is in expanding our lineup of

distributed primitives, to allow for something of a "distributed computational basis" for

ML applications. This necessitates functionality like distributed add/map, distributed file

read/write, and other linear algebra primitives like matrix inverse, and matrix factorization.

We also would like to be able to use this system to aid in providing testing data for the

tiling optimization facet of Phylanx. The capacity to write many different algorithms with

different tilings, and extract performance data will help give intuition, or experimental

validation, in the development of a static tiling optimizer.
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Appendix A. Linear Regression

Linear regression is a method of fitting a model to a data set in order to obtain a linear
model minimizing error between observed and fitted values based on a number of input
variables, known as regressors. The goal is to obtain a model of weights x, so that any
input row, or set of input rows for which you have regressor data can be used to predict the
value of another, related variable, the value of which you do not have access to, or which it
may otherwise be too costly to obtain. A simple example is if you wanted to determine the
likely productivity of a corn field. If you can create a model based on rain, fertilizing, or
other variables, you can not only predict the productivity of the field at harvest, but also
use the coefficients obtained in the model to compare the relative contribution of regressors
on field productivity.
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Appendix B. Copyright Information

This work was written in partial completion of the degree Master of Science and was not
published in any journal, conference proceeding, or other peer-reviewed publishing outlet.
As such, it is not subject to copyright.
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